Class PromptTemplate<RunInput, PartialVariableName>

Schema to represent a basic prompt for an LLM.

import { PromptTemplate } from "langchain/prompts";

const prompt = new PromptTemplate({
inputVariables: ["foo"],
template: "Say {foo}",
});

Type Parameters

  • RunInput extends InputValues = any
  • PartialVariableName extends string = any

Hierarchy (view full)

Implements

Constructors

Properties

PromptValueReturnType: StringPromptValueInterface
inputVariables: Extract<keyof RunInput, string>[]

A list of variable names the prompt template expects

Partial variables

template: MessageContent

The prompt template

templateFormat: TemplateFormat = "f-string"

The format of the prompt template. Options are "f-string" and "mustache"

validateTemplate: boolean = true

Whether or not to try validating the template on initialization

true

name?: string
outputParser?: BaseOutputParser<unknown>

How to parse the output of calling an LLM on this formatted prompt

Methods

  • Convert a runnable to a tool. Return a new instance of RunnableToolLike which contains the runnable, name, description and schema.

    Type Parameters

    Parameters

    • fields: {
          schema: ZodType<T, ZodTypeDef, T>;
          description?: string;
          name?: string;
      }
      • schema: ZodType<T, ZodTypeDef, T>

        The Zod schema for the input of the tool. Infers the Zod type from the input type of the runnable.

      • Optionaldescription?: string

        The description of the tool. Falls back to the description on the Zod schema if not provided, or undefined if neither are provided.

      • Optionalname?: string

        The name of the tool. If not provided, it will default to the name of the runnable.

    Returns RunnableToolLike<ZodType<ToolCall | T, ZodTypeDef, ToolCall | T>, StringPromptValueInterface>

    An instance of RunnableToolLike which is a runnable that can be used as a tool.

  • Generate a stream of events emitted by the internal steps of the runnable.

    Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.

    A StreamEvent is a dictionary with the following schema:

    • event: string - Event names are of the format: on_[runnable_type]_(start|stream|end).
    • name: string - The name of the runnable that generated the event.
    • run_id: string - Randomly generated ID associated with the given execution of the runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID.
    • tags: string[] - The tags of the runnable that generated the event.
    • metadata: Record<string, any> - The metadata of the runnable that generated the event.
    • data: Record<string, any>

    Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

    ATTENTION This reference table is for the V2 version of the schema.

    +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | event | name | chunk | input | output | +======================+==================+=================================+===============================================+=================================================+ | on_chat_model_start | [model name] | | {"messages": [[SystemMessage, HumanMessage]]} | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_chat_model_stream | [model name] | AIMessageChunk(content="hello") | | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_chat_model_end | [model name] | | {"messages": [[SystemMessage, HumanMessage]]} | AIMessageChunk(content="hello world") | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_llm_start | [model name] | | {'input': 'hello'} | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_llm_stream | [model name] | 'Hello' | | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_llm_end | [model name] | | 'Hello human!' | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_chain_start | format_docs | | | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_chain_stream | format_docs | "hello world!, goodbye world!" | | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_chain_end | format_docs | | [Document(...)] | "hello world!, goodbye world!" | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_tool_start | some_tool | | {"x": 1, "y": "2"} | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_tool_end | some_tool | | | {"x": 1, "y": "2"} | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_retriever_start | [retriever name] | | {"query": "hello"} | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_retriever_end | [retriever name] | | {"query": "hello"} | [Document(...), ..] | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_prompt_start | [template_name] | | {"question": "hello"} | | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+ | on_prompt_end | [template_name] | | {"question": "hello"} | ChatPromptValue(messages: [SystemMessage, ...]) | +----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+

    Parameters

    • input: RunInput
    • options: Partial<RunnableConfig> & {
          version: "v1" | "v2";
      }
    • OptionalstreamOptions: Omit<EventStreamCallbackHandlerInput, "autoClose">

    Returns IterableReadableStream<StreamEvent>

  • Parameters

    • input: RunInput
    • options: Partial<RunnableConfig> & {
          encoding: "text/event-stream";
          version: "v1" | "v2";
      }
    • OptionalstreamOptions: Omit<EventStreamCallbackHandlerInput, "autoClose">

    Returns IterableReadableStream<Uint8Array>

  • Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.

    Parameters

    Returns AsyncGenerator<RunLogPatch, any, unknown>

  • Take examples in list format with prefix and suffix to create a prompt.

    Intended to be used a a way to dynamically create a prompt from examples.

    Parameters

    • examples: string[]

      List of examples to use in the prompt.

    • suffix: string

      String to go after the list of examples. Should generally set up the user's input.

    • inputVariables: string[]

      A list of variable names the final prompt template will expect

    • exampleSeparator: string = "\n\n"

      The separator to use in between examples

    • prefix: string = ""

      String that should go before any examples. Generally includes examples.

    Returns PromptTemplate<any, any>

    The final prompt template generated.